Ремонтопригодность холодильного агрегата

Контактные телефоны - 89208490035, 89006991121 - Если «возраст» вашего холодильника не позволяет бесплатное гарантийное обслуживание, то его поломка приносит весьма немалые затраты. Даже простой вызов мастера на дом, обойдётся дешевле, чем покупка нового холодильного агрегата. Не всегда выход из строя холодильника влечет за собой замену его узлов на новые в специальной мастерской, а ведь можно сделать этот капитальный ремонт у себя дома, под вашим визуальным контролем, всего лишь вызвав толкового спеца, - многое зависит от знаний, а не от опыта,- опыта который порой проявляется в обмане клиента! Но главное — определить, что же сломалось и можно ли исправить это в пределах разумной цены, и придется обращаться во многих случаях за помощью к профессионалам. Чтобы поставить диагноз, рассмотрим в самых общих чертах устройство и принцип работы бытового холодильника компрессионного типа. Устройство и принцип работы холодильника Рис. 1. Принципиальная схема холодильного агрегата Рис. 1. Принципиальная схема холодильного агрегата ► Охлаждение рабочей камеры холодильника производит холодильный агрегат. Он состоит из мотора-компрессора, конденсатора и испарителя, соединенных между собой системой трубопроводов. Холодильный агрегат полностью герметичен и заполнен под давлением хладогентом — газом фреоном-12, R 134a, R 600a, и порой другими видами фреонов. Работает холодильный агрегат следующим образом. Компрессор откачивает пары фреона из испарителя, сжимает их и нагнетает в конденсатор. Здесь пары охлаждаются, конденсируются и превращаются в жидкий фреон. Далее последний через фильтр-осушитель и капиллярную трубку направляется в испаритель. Во внутренних его каналах жидкий фреон испаряется, отнимая тепло от стенок и охлаждая таким образом, воздух в холодильной камере. Пары фреона откачиваются из испарителя компрессором. Цикл непрерывно повторяется. Для поддержания требуемого теплового режима внутри холодильной камеры агрегат работает, периодически включаясь и выключаясь автоматическим и механическим датчиком-реле температуры ( термореле ). Включение электродвигателя мотор-компрессора производится пусковым реле ( пускозащитным реле ), в одном корпусе с которым смонтировано тепловое защитное реле ( но не всегда ), предназначенное для защиты электродвигателя от перегрузок. Эти элементы обеспечивают автоматическое управление холодильным агрегатом и показаны на принципиальной электрической схеме холодильника. Электрическая схема компрессионного холодильника ► При работе холодильного агрегата в режиме «охлаждение» («работа») ток идет по цепи — из сети через контакты датчика-реле температуры Р1 (они замкнуты). Контакты реле-переключателя Р21 режима «оттаивание» тоже замкнуты, образуя замкнутую цепь с рабочей обмоткой электродвигателя мотор-компрессора, катушкой пускового реле К, нагревательным элементом R2, биметаллической пластиной БМ, контактами теплового защитного реле КК, сетью. Электродвигатель мотор-компрессора в этом режиме вращается с номинальной скоростью. Ток, потребляемый электродвигателем от сети, не превышает номинальной величины. Поэтому контакты КД пускового реле и контакты КК реле тепловой защиты остаются в положении, указанном на схеме и никак не влияют на работу холодильного агрегата. При достижении заданной минимальной температуры охлаждения холодильной камеры срабатывает датчик-реле температуры и размыкает контакты Р1, после чего холодильный агрегат останавливается. По мере повышения температуры в холодильной камере датчик-реле температуры замыкает контакты Р1, цепь питания электродвигателя восстанавливается и по ней вновь течет ток. Но, так как электродвигатель в начальный момент не вращается, потребляемый им ток (пусковой ток) в 3...5 раз выше номинального. Большой пусковой ток, протекая по обмотке катушки К пускового реле, вызывает его срабатывание и замыкание контактов КД. Замкнутые контакты КД подключают к сети пусковую обмотку электродвигателя (см. рис. 2) и двигатель разгоняется до номинальной частоты вращения, а потребляемый им ток снижается. При снижении тока до номинальной величины контакты КД размыкаются и схема питания двигателя автоматически переходит в режим «работа компрессора», описанный выше. Весь цикл автоматического запуска двигателя в исправном холодильнике занимает не более 2...3 с. Если за это время электродвигатель мотор-компрессора не запустился или потребляемый им ток после запуска выше номинального, то через 5...10 с нагревательный элемент R2 нагреет биметаллическую пластину БМ, которая изгибаясь, разомкнет контакты КК и отключает электродвигатель. Таким образом осуществляется защита электродвигателя от перегрева. Через некоторое время пластина БМ остынет, вернется в исходное положение, замкнув КК, и произойдет повторная попытка автоматического запуска электродвигателя. Так действуют холодильный агрегат и устройства, обеспечивающие его работу в автоматическом режиме в исправном холодильнике, далее принцип работы у различных холодильных систем порой отличается . Диагностики и поиск неисправности. По внешним признакам подавляющее число неисправностей можно разделить на три типа: 1. Холодильник при включении в электрическую сеть не запускается. Либо запускается, но через несколько секунд останавливается, затем опять запускается и вновь останавливается. И так далее. В этих случаях неисправность следует искать скорее всего в электрической схеме холодильника, и возможно тоже и поломка в системе подачи фреона. 2. Холодильник при включении в электросеть нормально запускается, работает, но не «морозит» должным образом. В данной ситуации наиболее вероятная причина неисправности — повреждение одного из элементов холодильного агрегата, или же в вентиляторе в системе автоматической с блоком управления. Неисправности электросхемы холодильника При подозрении на неисправность в электрической схеме в первую очередь необходимо убедиться в том, что исправна сетевая розетка и напряжение в сети соответствует норме — 220 В ±10%. При напряжении ниже 195 Вольт большинство холодильников нормально работать уже не могут, или же вообще произойдет выход из строя других систем холодильника. И индикатором в виде отвертки или авторучки с неоновой лампочкой мало пригоден для этой цели, но не целесообразен, так как обрыв нулевого провода обнаружить с его помощью затруднительно. Убедившись в том, что розетка и вилка сетевого шнура исправны и обеспечен надежный контакт — ничего не искрит и не греется, — можно перейти к поиску неисправности в электросхеме холодильника. «Сердце» холодильника — мотор-компрессор расположен, как правило, в самом низу корпуса в нише. Это либо горизонтальный цилиндр (тип ДХ), подвешенный на пружинах, либо «кастрюлька» (тип ФГ), жестко привинченная к раме. Если при внешнем осмотре нет видимых невооруженным глазом повреждений, надо определиться с вызовом специалиста во многих случаях - 89208490035, 89006991121, целы ли обмотки электродвигателя. Для этого следует отключить пускозащитное реле от мотор-компрессора. Реле может быть закреплено непосредственно на жестких выводах мотор-компрессора или стоять на раме рядом с мотор-компрессором и соединяться с ним тремя гибкими проводниками-выводами (см. рис. 2), первый из которых — вывод пусковой обмотки электродвигателя («пуск»), второй — вывод рабочей обмотки («раб.»), третий — общий провод для пусковой и рабочей обмоток («общ.»). Рис. 3. Схема и устройство индикатора для проверки электрических цепей Омметром или индикатором необходимо проверить неразрывность цепи между тремя выводами мотор-компрессора и между любым из этих выводов и корпусом. Делают специалист - холодильщик это так. Подключают один из щупов омметра или индикатора к одному из выводов, другим щупом по очереди касаются двух оставшихся выводов и корпуса. Отклонение стрелки прибора свидетельствует о том, что проверяемая цепь цела. У исправного двигателя все варианты попарной проверки выводов («общ.», — «раб.», «общ.» — «пуск» и «раб.» — «пуск») должны показывать неразрывность цепи и не должны показывать наличие цепи между любым из выводов и корпусом. В противном случае произошел «обрыв» одной из обмоток или обмотка замыкается на корпус. Вывод однозначен: при такой неисправности необходима замена мотор-компрессора. Если в результате проверки обмоток электродвигателя вы пришли к выводу, что здесь все в порядке, но не надо забывать, что определение сопротивления обмоток тоже ведётся с специальными знаниями сопротивления обмоток компрессора, следующий шаг поиска неисправности — проверка цепей управления (см. рис. 2). Для проверки этой части электрической схемы холодильника необходимо отключить от пускозащитного реле два подводящих провода и временно замкнуть их между собой. Прикоснувшись щупами омметра или индикатора к контактным штырям сетевой вилки, можно одновременно проверить исправность и вилки, и сетевого шнура, и контактов датчика-реле температуры Р1, и контактов реле-переключателя «оттаивание» Р2, но не факт, что данные проверки выявят сразу причину данных неисправностей, без специальных знаний выявить причину невозможно, ведь схемы порой и не идентичны, бывает присутствует пусковой конденсатор, и массу других электронно-электрических компонентов. Если омметр или индикатор показывают, что «обрыва» в проверяемой цепи нет, то все перечисленные элементы — вне подозрений. Если же омметр показывает «обрыв» цепи, все перечисленные элементы требуют детальной проверки. На ремонте вилки и сетевого шнура (в местах его перегиба возможен разрыв внутренних токоведущих жил) подробно останавливаться не будем. Такие элементарные неисправности встречаются достаточно часто не только в холодильнике. Ремонт датчика-реле температуры и реле-переключателя Для проверки датчика-реле температуры и реле-переключателя «оттаивание» их необходимо снять и отсоединить от их выводов подводящие провода. Сделать это несложно. Из инструментов потребуется лишь отвертка. Омметром (индикатором) проверяют состояние контактов каждое реле: «обрыв» означает, что данное реле неисправно и его следует заменить новым. А как быть, если нового нет? С реле-переключателем «оттаивание» все просто — его выводы можно замкнуть между собой проволочной перемычкой, и холодильник вновь оживет. Единственное неудобство — от ледяной шубы на испарителе холодильной камеры придется избавляться, периодически отключая холодильник от сети вручную, ине факт, что это не приведет к другим поломкам - замыкать по идеи ничего нельзя, тем более на длительный срок работы холодильного агрегата. Для датчика-реле температуры такой способ «ремонта» неприемлем Замкнуть между собой выводы этого реле перемычкой можно лишь для того, чтобы убедиться в правильности поставленного диагноза. Это реле — одна из наиболее ответственных деталей холодильника, поэтому его разумнее всего заменить гарантированно исправным, то есть новым. Рис. 4. Способ ремонта контактной группы датчика-реле температуры ► Но... в безвыходной ситуации, если нет нового реле, можно попытаться отремонтировать старое. Манометрический датчик-реле температуры, например, типа АРТ-2 (рис. 4) представляет собой герметизированную полость, заполненную фреоном-12, который через гибкую мембрану (сильфон) и систему рычагов воздействует на контакты, включая и выключая электродвигатель мотора-компрессора. Чаще всего выходит из строя именно контактная группа. Причины, как правило, две: либо подгорание и окисление контактов, либо поломка пружинящей контактной пластины из-за «усталости» металла в месте наибольшего изгиба (см. рис. 4). В первом случае достаточно зачистить и выровнять соприкасающиеся поверхности контактных «лепешек». Во втором — заменить целиком пружинящую пластину, закрепив новую винтом М2 с гайкой. В качестве заготовки для новой пластины можно использовать контактные пластины от реле типа МКУ-48. Однако, с точки зрения большей надежности и простоты регулировки, изогнутую часть пружинящей контактной пластины лучше сделать из двух более тонких пластинок, как показано на рис. 4. Отремонтированная таким образом контактная группа легко регулируется и надежно работает в течение нескольких лет. Неисправность пускозащитного реле Если же в результате проверки цепей управления окажется, что все элементы этого участка схемы (см. рис. 2) исправны, то остается «разобраться» с пускозащитным реле. Чтобы снять крышку реле, придется высверлить заклепки, которыми она крепится к основанию (при сборке реле после ремонта их надо будет заменить винтами М3 с гайками). Рис. 5. Конструктивная схема и основные элементы пускозащитного реле Рис. 5. Конструктивная схема и основные элементы пускозащитного реле ► Встречаются реле, у которых крышка крепится к основанию просто на защелках. Их необходимо осторожно отогнуть отверткой. Устройство большинства типов пускозащитных реле одинаково (рис. 5). Как должно работать исправное пусковое реле, мы уже говорили выше. Наиболее часто встречаются следующие неисправности: обгорание контактной пары 1 и 2; заклинивание сердечника 5 во внутреннем канале каркаса катушки; поломки штока 3 и разрушение пружины. Чтобы устранить перечисленные неисправности, надо извлечь катушку 4 из корпуса. Как правило, она крепится просто на защелке. Вынуть из ее канала «прыгающие» контакты 2 вместе со штоком 3, сердечником 5 и пружиной. Очистить от пыли и грязи канал катушки и сердечник. Возможно, придется зачистить наждачной бумагой сердечник и внутреннюю поверхность канала так, чтобы сердечник 5 перемещался в канале под собственным весом совершенно свободно без перекосов и заеданий. Обязательно зачистите рабочие поверхности контактов 1 и 2. Теперь остается собрать пусковое реле в обратной последовательности. Поломка штока Рис. 6. Замена штока подвижных контактов пускового реле Рис. 6. Замена штока подвижных контактов пускового реле ► Частой причиной выхода из строя пускового реле является поломка пластмассового штока 3 (рис. 5). Заменить его можно самодельным штоком, сделанным из гвоздя 2,5X35 мм. Размеры на рис. 6 указаны для пускозащитного реле типа РТК-Х(М). Для других типов реле размеры нетрудно уточнить по месту. Восстановленное таким способом пусковое реле работает долго и надежно. Однако иногда приходится сталкиваться с очень неприятной ситуацией: проработав неделю-другую, контакты 1 и 2 опять обгорают и окисляются до такой степени, что перестают выполнять свои функции. После повторной зачистки контакты обгорают и перестают работать так же быстро, как и в первом случае. Очень редко, но бывает, что даже замена реле совершенно новым приводит к тому же результату. Рис. 7. Схема электронного коммутатора пусковой обмотки электродвигателя Рис. 7. Схема электронного коммутатора пусковой обмотки электродвигателя ► Причин такого поведения может быть много. Не будем их все перечислять, так как большинство из них трудно устранить в домашних условиях. Но восстановить нормальную работу холодильника можно и в этом случае с помощью электронного коммутатора на симисторе (рис. 7, а). В предлагаемой схеме контакты КД пускового реле замыкают цепь не пусковой обмотки, а управляющего электрода симистора VS1, и по ним протекает очень маленький ток, не вызывающий их разрушение и износ. Ток через пусковую обмотку включается и выключается симистором VS1 типа КУ208Г. Его можно заменить на ТС112-10, ТС122-10 и другие с рабочим током не менее 2 А и рассчитанными на напряжение свыше 400 В. Дефицитный симистор можно заменить двумя широко распространенными тиристорами типа КУ202Н (рис. 7, б). Эта схема по всем параметрам эквивалентна схеме на рис. 7, а, но содержит больше деталей. Неисправность реле тепловой защиты Еще одна достаточно часто встречающаяся неисправность — перегорание нагревателя R2 в реле тепловой защиты. Холодильник при этом, естественно, не включается. Эту неисправность легко определить с помощью омметра (индикатора) при снятой крышке пускозащитного реле, или визуально. Убедившись, что неисправность именно здесь, пускозащитное реле надо заменить новым. Ремонтировать устройство тепловой защиты в домашних условиях не рекомендуется, поскольку оно предохраняет не только обмотки электродвигателя от перегрева, но и ваш дом от пожара. Это слишком ответственная деталь и экономить на ней не стоит. Неисправности, которые нельзя устранить в домашних условиях Если в результате проверки ее вы убедились, что исправны датчик-реле температуры Р1 и реле-переключатель «оттаивание» Р2 (устройство полуавтоматического оттаивания), все элементы пускозащитного реле правильно выполняют свои функции, а обмотки электродвигателя не имеют обрывов и замыканий на корпус, но холодильник тем не менее не работает (включается и тут же отключается), значит, неисправность — в холодильном агрегате. Это может быть и поломка компрессора, и частичное или полное засорение капиллярной трубки, и фильтра-осушителя, и межвитковое замыкание в обмотках электродвигателя. Для диагностики и ремонта этих неисправностей необходимы специальное оборудование и инструменты. Без них выполнить ремонт в домашних условиях невозможно, придется обратиться к специалистам. К сожалению, придется обратиться к специалистам и в том случае, если ваш холодильник нормально запускается при подключении его к сети, но не «морозит», как положено. Чаще всего из-за разгерметизации и утечки фреона приходится заменять испаритель, конденсатор, мотор-компрессор или целиком весь холодильный агрегат.

Доска объявлений 24SALES.RU